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Abstract

Overparameterized models like deep neural networks have the intriguing ability to
recover target functions with fewer sampled data points than parameters (Zhang
et al., 2023a). To gain insights into this phenomenon, we concentrate on a single-
neuron target recovery scenario, offering a systematic examination of how initializa-
tion and sample size influence the performance of two-layer neural networks. Our
experiments reveal that a smaller initialization scale is associated with improved
generalization, and we identify a critical quantity called the "initial imbalance
ratio" that governs training dynamics and generalization under small initialization,
supported by theoretical proofs. Additionally, we empirically delineate two critical
thresholds in sample size—termed the "optimistic sample size" and the "separation
sample size"—that align with the theoretical frameworks established by Zhang
et al. (2023a,b). Our results indicate a transition in the model’s ability to recover
the target function: below the optimistic sample size, recovery is unattainable;
at the optimistic sample size, recovery becomes attainable albeit with a set of
initialization of zero measure. Upon reaching the separation sample size, the set
of initialization that can successfully recover the target function shifts from zero
to positive measure. These insights, derived from a simplified context, provide a
perspective on the intricate yet decipherable complexities of perfect generalization
in overparameterized neural networks.

1 Introduction

In machine learning, a fundamental problem is to learn a function from data sampled from a target
function f∗ with the goal of minimizing the generalization error. Traditional learning theory suggests
that overparameterized models, where the number of parameters exceeds the number of sample
points, are prone to overfitting and poor generalization (Vapnik, 1998; Bartlett and Mendelson, 2002).
However, in practice, overparameterized deep neural networks often exhibit good generalization
performance (Breiman, 2018; Zhang et al., 2021). To demystify this generalization phenomenon,
researchers have sought to devise theoretical complexity measures to determine an upper bound on
the generalization gap. Many proposed complexity measures are predicated on worst-case analyses,
assessing the most unfavorable generalization scenarios within a given hypothesis space. Nonetheless,
empirical investigations often show a weak or nonexistent relationship between these theoretical
predictors and the observed generalization performance of actual models (Jiang et al., 2019).

Recent research has explored a novel concept contrary to the worst-case scenario, referred to as
the "optimistic estimate". This investigates the minimum number of samples that models need to
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exactly reconstruct the target function in the recoverable setting (Zhang et al., 2022, 2023a). Their
experimental findings indicate that with appropriate hyperparameter tuning, the number of data points
required to recover the target function can approach, or even match, the proposed "optimistic sample
size". Furthermore, Zhang et al. (2023b) characterized the structure of the loss landscape of two-layer
neural networks near global minima. They discovered that as the sample size reaches a certain
threshold, called the "separation sample size", the set of parameters with zero generalization error Q∗,
referred to as the target set, separates out (see Definition 1 for the formal definition of separation).
However, the target set Q∗ generally consists of different branches, and it remains unclear to which
branch the actual training process will converge for different sample sizes and initialization.

In our study, we conduct a systematic exploration of the impact that initialization and sample size
have on the dynamics and convergence results of a model. The challenge in studying neural network
dynamics stems from its dependency on multiple factors, including the specific architecture, dataset,
optimization technique, and initialization method. To dissect the global dynamics and generalization
capabilities within overparameterized neural networks, we concentrate on a simplified scenario: the
recovery of a single-neuron target. In our context, term "recovery" and "perfect generalization"
are both identical to zero generalization error. Despite its simplicity, this scenario still represents
an overparameterized system, and an in-depth examination can provide insights on more intricate
situations. Our principal conclusions are encapsulated as follows:

Effect of Initialization Scale: Within the context of single-neuron target recovery, we experimentally
demonstrate that smaller initialization scales are conducive to enhanced generalization.

Effect of Randomness: Randomness retains its significance even as the initialization scale nears zero;
we pinpoint a critical variable, termed the "initial imbalance ratio", which serves as a determinant of
the training dynamics and generalization error.

Effect of Sample Size: Our empirical results highlight two critical thresholds in sample size—the
optimistic sample size and the separation sample size—that align with theoretical forecasts by Zhang
et al. (2023a,b). Specifically, we empirically establish that:

(i) Below optimistic sample size, the model cannot recover the target function.

(ii) At optimistic sample size, a zero-measure subset of initialization can recover the target function.

(iii) Once the sample size reaches the separation sample size, there exists a non-zero probability that
certain combinations of initialization and sampling will successfully recover the target function.

(iv) When sample size equals the number of parameters, all small-scale initialization can recover
the target function.

2 Related works

The single-neuron fitting problem has been extensively studied, with various works investigating
the convergence properties of networks in both exactly parameterized and overparameterized set-
tings (Yehudai and Ohad, 2020; Vardi et al., 2021; Xu and Du, 2023; Vempala and Wilmes, 2018).
These works have established results on the convergence rates and conditions for neural networks,
laying a theoretical groundwork for discussions on generalization. When it comes to generalization,
several studies have derived polynomial generalization bounds (Wu, 2022; Frei et al., 2020), while
others have presented theoretical results of implicit regularization (Chistikov et al., 2024; Oymak
and Soltanolkotabi, 2019; Safran et al., 2022). However, these analyses are typically restricted to
the exactly parameterized setting or are specific to the ReLU activation function. In this paper, we
empirically examine generalization enigmas in overparameterized networks with analytic activation
functions. We demonstrate that perfect generalization is attainable for a certain sample size within
the single-neuron target framework, offering a more nuanced characterization of generalization than
the polynomial generalization bounds previously reported.

Recent theoretical advancements by Zhang et al. (2023a) and Zhang et al. (2022) introduced an opti-
mistic estimate framework for general nonlinear models, suggesting that above a certain "optimistic
sample size," some global minima become locally linearly stable, thereby allowing initializations
close to these points to converge to stable solutions. Furthermore, Zhang et al. (2023b) delved into
the branch structure of global minima in two-layer neural networks, defining a "separation sample
size." Despite the theoretical importance of these findings, empirical validation has been limited. Our

2



study aims to bridge this gap by providing a systematic empirical investigation of how initialization
and sample size influence the actual dynamics and convergence outcomes in neural network models.

3 Preliminaries

3.1 Notations

In this paper, we investigate a two-layer fully connected neural network represented by fθ(x) =∑m
i=1 aiσ(w

⊤
i x), where x ∈ Rd and θ = (a1,w1, a2,w2, . . . , am,wm) ∈ R(d+1)m. The function

σ : R → R denotes the activation function, and m represents the width of the network. The
target function we aim to approximate is a single-neuron function f∗(x) = a0σ(w

⊤
0 x). The

dataset (xi, yi)
n
i=1 is generated by sampling from the target function f∗, that is, yi = f∗(xi) for

i = 1, 2, . . . , n. We define the loss function as ℓ(θ) = 1
2

∑n
i=1(fθ(xi)− yi)

2.

3.2 Optimistic sample size and separation sample size

The target set, denoted by Q∗, is defined as the set of parameters that achieve perfect generalization:

Q∗ := {θ | fθ(x) = f∗(x),∀x ∈ Rd}.

Zhang et al. (2023b) classified Q∗ into several affine subspaces for a two-layer neural network without
a bias term. We illustrate this with Example 1, where Q∗ is the union of two affine spaces.
Example 1. Consider a neural network model fθ(x) = a1 tanh(w1x+ b1) + a2 tanh(w2x+ b2),
where x ∈ R. Let the target function be f∗(x) = a0 tanh(w0x+ b0). We define:

Q1 : = {θ | (w1, b1) = (w2, b2) = (w0, b0), a1 + a2 = a0}
Q2 : = {θ | (w1, b1) = (w0, b0), (w2, b2) ̸= (w0, b0), a1 = a0, a2 = 0}

Treating parameters symmetric about the origin as identical and the interchange of the two neurons
as identical, we have Q1 ∪Q2 = Q∗(See Figure 3(a) for geometric structure of Q1 and Q2).
Definition 1 (Separation of Qk). A set Qk is said to be separated if there exists an open neighborhood
M around Qk such that M ∩ ℓ−1(0) = Qk ∩ ℓ−1(0), where ℓ−1(0) is the set of global minima. The
minimum number of samples required for Qk to be separated is referred to as the "separation sample
size".

Definition 1 introduces the concept of separation and separation sample size. Zhang et al. (2023b)
proves that (i) the separation sample sizes of Q1 and Q2 are 4 and 5, respectively, and (ii) when
n = 6, Q∗ = ℓ−1(0).

Zhang et al. (2023a) proposed the concept of the "optimistic sample size," which determines the
minimum number of samples required to achieve zero generalization error of a target function. In
Example 1, the optimistic sample size is 3. Table 1 summarizes the various sample sizes of Example 1.

sample size n Name

n = 3 optimistic sample size
n = 4 separation sample size of Q2

n = 5 separation sample size of Q1

n = 6 Q∗ = ℓ−1(0)

Table 1: Different sample sizes in Example 1(Zhang et al., 2023a,b)

3.3 Experimental setup

Our methodology involves sampling a set of data points from the target function f∗ and train the
network fθ until the parameters converge to θ∞. To evaluate the training effectiveness, we measure
the L2 distance between f∗ and the learned function fθ∞ . The ideal outcome is that f∗ = fθ∞ , a
condition we term "recovery" or "perfect generalization".
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For training, we employ gradient descent with the update rule θn+1 = θn − η∇ℓ(θn), using a fixed
learning rate η. Parameters are initialized according to a Gaussian distribution with mean vector 0
and covariance matrix σI , where I denotes the identity matrix. The standard deviation σ is referred
to as the "initialization scale". We utilize a random seed to generate the Gaussian distribution, with
each seed uniquely identified by a corresponding number.

4 Effect of initialization scale

Our experimental findings suggest a relationship between a small initialization scale of network’s
parameters and a lower generalization error. Figures 1(a) to 1(e) depict the generalization error
across various initialization. The scale of initialization is represented by σ on the x-axis. For each
initialization scale, we generate initialization using 100 distinct random seeds. The sample points
are fixed, evenly spaced over the interval [−2, 2]. We observe that, regardless of the value of n,
the generalization error tends to increase with the sample size, with this trend being particularly
noticeable for n = 3 and n = 4. In Figure 1(f), we use samples drawn independently from an
standard Gaussian distribution. Both samples and initialization are generated using 50 random seeds,
and the generalization error is calculated as the average over these 50 trials. Results of Figure 1(f)
indicate that, statistically, the generalization error decreases as the sample size grows, indicating
that larger datasets are conducive to better generalization. Moreover, this reduction in error is more
significant at smaller scales of initialization, highlighting the benefits of smaller initializations for
achieving improved generalization.
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(a) fixed sampling, n = 2
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(b) fixed sampling, n = 3
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(c) fixed sampling, n = 4
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(d) fixed sampling, n = 5
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(e) fixed sampling, n = 6

2 3 4 5 6
sample size

10 3

10 2

10 1

ge
ne

ra
liz

at
io

n 
er

ro
r 1e-20

0.1
0.25
0.5
1

(f) random sampling

Figure 1: The network and target function correspond to Example 1. Here, n represents the sample
size. For Figures 1(a) through 1(e), samples were evenly spaced on the interval [−2, 2]. In Figure 1(f),
the dataset {(xi, yi)}ni=1 is such that yi = f∗(xi), with the {xi}ni=1 being independently and
identically distributed according to a standard Gaussian distribution. For each combination of
initialization scale and sample size, we conducted 50 trials with different seeds to generate data points
and parameter initializations. The reported generalization error is the average over these trials. Curve
legends indicate the initialization scale.

5 Effect of randomness of initialization

5.1 Initialization and trajectory of parameters

Previously, we empirically demonstrated that small-scale initialization enhances the generalization.
This section delves into the dynamics of gradient flow under small initialization.
Theorem 1. Consider the gradient flow governed by the differential equation

dθ

dt
= −∇ℓ(θ(t)),θ(0) = θ0, (1)
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where ℓ(θ) = 1
2

∑n
i=1(fθ(xi) − yi)

2 for (xi, yi) ∈ Rd × R, with the model fθ(x) =∑m
k=1 akσ(w

⊤
k x), and the parameter vector θ = (a1,w1, . . . , am,wm) ∈ Rm(d+1). The so-

lution to (1) is denoted by ϕ(θ0, t). Define γ :=
∑n

i=1 yixi, Ci(θ) := ai∥γ∥2 + w⊤
i γ, and

C(θ) := (C1(θ), . . . , Cm(θ)). Assume the following conditions:

(i) σ(x) is twice continuously differentiable on R, σ(0) = 0, and σ′(0) ̸= 0.

(ii) γ ̸= 0.

Under these assumptions, the following statements hold:

(i) For any t ∈ R and θ ∈ Rm(d+1), the limit h(θ, t) := limα→0 ϕ(αθ, t+
1

∥γ∥2
log 1

α ) exists.

(ii) The function h(θ0, t) is determined by C(θ0). That is, if C(θ1) = C(θ2), then h(θ1, t) =
h(θ2, t) for all t.

(iii) If C(θ0) ̸= 0, then the trajectory Tθ0
:= {h(θ0, t) : t ∈ R} is determined by C(θ0)

∥C(θ0)∥2
. That

is, if C(θ1) = C(θ2), then Tθ1
= Tθ2

.

The proof of Theorem 1 is in the Appendix A.1. A more general result for dynamic systems is stated
in Theorem 3 in AppendixA.1. To intuitively understand Theorem 1, we consider the linearization
of Equation (1) at the origin. Assumption (i) of Theorem 1 ensures that ∇ℓ(0) = 0, allowing us
to approximate −∇ℓ(θ(t)) by −Hess(ℓ(0))θ when ∥θ∥2 is small. Under this linear approximation,
the solution to Equation (1) can be expressed as θ(t) ≈ e−Hess(ℓ(0))tθ0. When the norm ∥θ0∥2 is
sufficiently small, a large t is required for θ(t) to move significantly away from the origin. In such
cases, the largest eigenvalue of −Hess(ℓ(0)), denoted µ1, becomes dominant, leading to

θ(t) ≈ eµ1t
k∑

i=1

(θ⊤
0 vi)vi,

where {v1, . . . ,vk} is the orthonormal basis of the eigenspace corresponding to µ1. The evolution of
θ(t) is thus determined by the coefficients {θ⊤

0 vi}ki=1, which are encapsulated in the vector C(θ0)
defined in Theorem 1.

In the context of two-layer neural networks, C(θ0) = (C1(θ0), C2(θ0), . . . , Cm(θ0)) provides
an insightful interpretation. The expression θ(t) ≈ eµ1t

∑k
i=1(θ

⊤
0 vi)vi suggests that for i =

1, 2, . . . ,m, the following approximations hold:

ai(t) ≈
Ci(θ0)

2∥γ∥2
e∥γ∥2t,wi(t) ≈

Ci(θ0)γ

2∥γ∥22
e∥γ∥2t, (2)

where γ is a vector determined by the data. Equation (2) indicates that the direction of the vector
(ai,wi) is consistent across all neurons, characterized by γ. This observation is in line with the
findings of Zhou et al. (2022), which show that neural networks with small initial weights tend to
have input weights of hidden neurons aligning along certain data-determined directions. Moreover,
Equation (2) indicates that the magnitude of (ai,wi) is determined by Ci(θ0). Thus, the vector
C(θ0), representing the initial magnitudes of all neurons, determines early evolution of the parameters.
The normalized vector C(θ0)

∥C(θ0)∥2
, representing the initial relative magnitudes of all neurons, determines

trajectory of the parameters. Due to this, we refer C(θ0)
∥C(θ0)∥2

as "initial imbalance ratio".

To corroborate the theoretical insights posited by Theorem 1, we conducted a series of experiments.
We chose a model of the form fθ(x) = a1 tanh(w1x + b1) + a2 tanh(w2x + b2), with the target
function defined as f∗(x) = tanh(x+ 1). According to Theorem 1, under small initialization, the

parameter trajectory is determined by the normalized vector
(

C1(θ0)√
C2

1 (θ0)+C2
2 (θ0)

, C2(θ0)√
C2

1 (θ0)+C2
2 (θ0)

)
.

Given that σ(x) = tanh(x) is an odd function, the sign inversion of both C1(θ0) and C2(θ0) leads
to a symmetric trajectory about the origin, which we consider equivalent. Therefore, the trajectory is
effectively characterized by the ratio C1(θ0)

C2(θ0)
, denoted by c(θ0) :=

C1(θ0)
C2(θ0)

. For simplicity, we will
henceforth denote c(θ0) by c.
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Figure 2 shows the training results across five trials. Each trial used a different initialization scale and
random seed to generate Gaussian distribution but kept the ratio c = 0.5 across five trials by scaling
the initialization of second neuron. The results demonstrate that both the loss and the parameter
trajectories were consistent across all trials, lending strong empirical support to the theoretical
prediction that the trajectory is governed by the ratio c under small initialization.
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Figure 2: The network and target function correspond to Example 1. We trained the network
across five trials, each utilizing an evenly spaced 6 data points within the interval [−2, 2]. Distinct
initialization seeds and scales were used for each trial, but by scaling the initial parameters of the
second neuron, we keep c = 0.5 across all trials. To align the curves, we applied translations based
on distances calculated by Theorem 1.

5.2 Initialization and convergence point

As the scale of initialization approaches zero, the parameters’ trajectory has a limit. A natural question
arises: does the convergence point of the parameters also tend towards a limit as the initialization
scale becomes infinitesimally small? We affirmatively address this question in Theorem 2.
Theorem 2. Under the notations and assumptions of Theorem 1, and assuming that σ(x) is analytic,
then:

(i) The limit h(θ, t) := limα→0 ϕ(αθ, t+
1

∥γ∥2
log 1

α ) exists.

(ii) For any θ, if the set {h(θ, t) : t ≥ 0} is bounded, then the limit limt→∞ h(θ, t) exists and
is determined by the normalized vector C(θ)

∥C(θ)∥2
. Specifically, if C(θ1)

∥C(θ1)∥2
= C(θ2)

∥C(θ2)∥2
, then

limt→∞ h(θ1, t) = limt→∞ h(θ2, t).

(iii) If limt→∞ h(θ0, t) exists and is not a saddle point of ℓ(θ), then

lim
t→∞

h(θ0, t) = lim
α→0

lim
t→∞

ϕ(αθ0, t+
1

∥γ∥2
log

1

α
).

Additionally, the limit limt→∞ h(θ, t) is continuous at θ0.

The proof of Theorem 2 is presented in the Appendix A.3. We conduct experiments whenfθ(x) =
a1 tanh(w1x + b1) + a2 tanh(w2x + b2) and f∗(x) = tanh(x + 1). Literature suggests that
convergence to a saddle point is rare (Panageas et al., 2019) for gradient flow. Moreover, in neural
network experiments, divergence of θ(t) to infinity is seldom observed. Thus, the conditions of (ii)
and (iii) are typically met. The conclusion (iii) of Theorem 2 affirms that for a small initialization scale,
the convergence point of the parameters can be brought arbitrarily close to limt→∞ h(θ0, t). The
conclusion of (ii) implies that limt→∞ h(θ0, t) is determined by C

∥C∥2
. Therefore, under sufficiently

small initialization, the vector C
∥C∥2

almost determines the final convergence point of the parameters.
Define c := C1/C2 and c̃ := min{|c|, | 1c |}. Networks initialized with c and 1

c are identical upon
permuting the neurons and network initialized with c and −c yields trajectories symmetric about the
origin. Hence, c̃ effectively encompasses all cases of initialization by accounting for symmetry.

In Figure 3, we investigate the impact of initialization on the convergence point under small initializa-
tion. Figure 3(a) visualizes the target set Q∗ alongside the convergence points for various c̃. The line
is Q1, while the surface are Q2. These simulations, run over 106 iterations with a learning rate of
0.05 and a sample size of 6, reveal two significant observations:
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(i) The parameters consistently converge to Q∗ across different initialization, corroborating the
theoretical results in Table 1 that for n ≥ 6, the global minimum coincides with Q∗.

(ii) The convergence points lie on a one-dimensional manifold parameterized by c̃. Notably, as c̃
nears 1, the convergence point moves closer to Q1.

Figure 3(b) further illustrates the convergence behavior of the network’s parameters for diverse
initialization, focusing on convergence to points Q1 or Q2. The results demonstrate that convergence
occurs at Q1 when c approximates 1. For c values significantly divergent from 1, convergence at Q2

becomes more likely, with the demarcation at c = 1.35 and c = 0.74.

In the small initialization dynamics of a neural network, ratio c governs relative magnitude of two
neurons at initial stage. A c close to 1 suggests similar magnitudes for both neurons, leading to
convergence at Q1, where each neuron contributes to the output function. Conversely, a substantially
larger c implies that the first neuron’s magnitude predominates, resulting in convergence at Q2, where
the second neuron’s output contribution is zero. The two extremes, c = 1 and c = +∞, demonstrate
this: for c = 1, the ratios a1

a2
, w1

w2
, and b1

b2
remain constant at 1 for all t, converging to Q1. For

c = +∞, we have a2 = w2 = b2 = 0 for all t, resulting in convergence at Q2.

origin
w1 = w2 = b1 = b2 = 1, a1 + a2 = 1
a1 = w1 = b1 = 1, a2 = 0
a2 = w2 = b2 = 1, a1 = 0

0.0
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0.8

1.0
c

(a)

0 100 200 300 400
seed

10 1

101

103

c1
/c

2
Q1
Q2

(b)

Figure 3: The network and target function correspond to Example 1 with a sample size of 6 and an
initialization scale of 10−8. We utilized 400 random seeds to initialize the parameters. Figure 3(a)
shows the convergence points and the structures of Q1 and Q2, along with the origin and two
exemplary training trajectories. The dashed line is Q1 and the affine surface is Q2. Figure 3(b)
presents the convergence results using seeds 0-400, where blue and orange represent convergence to
Q1 and Q2, respectively. The x-axis denotes the seed index, and the y-axis measures the absolute
value of the ratio C1/C2. The two black horizontal lines mark the ratios at y = 1.35 and y = 0.74.

6 Effect of sample size

This section delves into the impact of training sample size on the network’s ability to achieve recovery.
In Figure 4, we present the generalization error under various combinations of initialization and sample
sizes. The network in question is defined as fθ(x) = a1 tanh(w1x+b1)+a2 tanh(w2x+b2), with the
target function being f∗(x) = tanh(x+1). For small initialization scale, the ratio c̃ = min{|c|, | 1c |}
adequately represents all initialization. When n = 2, the network fails to recover the target function
for any initialization, in line with the optimistic sample size theory (Zhang et al., 2023a). To elucidate,
a single-neuron target encompasses 3 parameters. With only two samples, an infinite number of
single-neuron targets could fit, preventing the network from identifying the desired target.

For n = 3 (see Figure 4(a)), recovery is feasible solely when c̃ = 0 or c̃ = 1. Initially, with n = 3,
neither Q1 nor Q2 is separated (see Table 1). The target sets Q1 and Q2, enveloped by global minima,
lead the network to likely converge to these global minima rather than the target set. This accounts for
the lack of recovery when c̃ ∈ (0, 1). Nonetheless, fortuitous scenarios occur. When c̃ = 1, the ratios
a1

a2
= w1

w2
= b1

b2
= 1 hold during training, simplifying the two-neuron network to a single-neuron

model, reducing six parameters to three. In such instances, three samples implies that the global
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minimum equals the target set (Zhang et al., 2023b), facilitating recovery when c̃ = 1. The case of
c̃ = 0 is similar.

For n = 4 (see Figure 4(c) and Figure 4(f)), recovery is attainable with a positive probability of
sampling and initialization. Meanwhile, with some samples, recovery remains unattainable for all
initialization. Table 1 indicates that for n = 4, Q2 is separated, whereas Q1 is not. Our findings
corroborate that once Q2 is separated, convergence to it is plausible with a positive probability.
Additionally, we demonstrate the existence of samples for which no small-scale initialization leads to
convergence to the target set.

For n = 5, some samples enable the network to recover for all small initialization, while others do
not. Table 1 shows that for n = 5, both Q1 and Q2 are separated. Our experiments suggest that
once Q1 and Q2 are separated, under some samples, recovery is achievable across all initialization.
Moreover, at n = 5, certain global minima with non-zero generalization error may be encountered
during training with specific samples. For n = 6, the network recovers for all small initialization, as
all global minima are associated with zero generalization error (see Table 1).

Using an analogy, we can liken the process of recovery to archery. The size of the training sample
dictates the structural configuration of the target. Once the sample size surpasses the threshold known
as the separation sample size, certain sections of the target become exposed and unobscured by any
other global minima, rendering them accessible with a non-zero probability. Concurrently, there are
certain shortcuts that facilitate reaching the target more directly. Specifically, when c̃ = 0 or c̃ = 1,
the network is capable of hitting the target at the so-called optimistic sample size, even if Q1 and
Q2 remain concealed by global minima. In essence, the sample size molds the target’s architecture,
while the initialization steers the direction of the "shot".
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(d) n = 5
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(e) n = 6
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Figure 4: The network fθ(x) and target function f∗ correspond to Example 1. The samples
{(xi, yi)}ni=1, where yi = f∗(xi), is obtained by drawing {xi}ni=1 from a standard Gaussian distri-
bution. Five random seeds were used to generate the samples. Generalization errors below 10−8 are
considered as successful recovery and identified with 10−8. Figure 4(f) depicts the convergence point
for n = 4 with samples generated by seed 3. The dashed line is Q1 and the affine surface is Q2. All
experiments were initialized with a scale of 10−20.

7 Extension to multi-neuron networks

The insights from the two-neuron, two-layer neural network analysis can be generalized to networks
with multiple neurons. Our experiments on a neural network with a width of 1000 and the activation
function σ(x) = x

1+x2 support this generalization. As depicted in Figure 5, the experiments reveal
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that under small initialization conditions, the parameter trajectories conform to the set C
∥C∥2

, as
postulated in Theorem 1.

Figure 6(a) shows that in a two-layer neural network approximating a single-neuron target function,
only a subset of neurons develop substantial weights and become key contributors to output function.
These neurons are distinguished by having the largest Ck values, aligning with earlier experimental
observations of two-neuron network that neurons with higher Ck values tend to have greater magni-
tudes. In Figure 6(b), we note that the generalization error is significantly low in an overparameterized
network. This is partly attributed to the phenomenon in Figure 6(a), where most neurons possess
minimal weights compared to the neuron with the largest weight magnitude. Consequently, the
neural network operates as if it has fewer active neurons. This decrease in active neuron count
effectively reduces the network’s complexity and improves its generalization capability. Besides
these experiments, we also conducted experiments with higher dimensional input (see Appendix B).
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Figure 5: A two-layer neural network with a width of 1000 and activation function σ(x) = x
1+x2 is

trained on 6 evenly spaced data points in the interval [−2, 2] with labels given by y = tanh(x+ 1).
Four trials with varying initialization seeds and scales were conducted. The ratio of initial parameters
Ci/C1 is set to 1.5+ 0.0015(i− 1) for each neuron i = 1, 2, . . . , 1000 in all trials. For visualization,
curves in Figure 5(a) are translated based on distances derived from Theorem 1. Figure 5(b) shows
the parameter trajectories for the first two neurons.
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Figure 6: Visualization of training dynamics and outcomes for a two-layer neural network with
variable widths. The networks use the tanh(x) activation function and are trained to approximate
the target function y = tanh(x + 1) using a dataset of 3 points equally spaced within the interval
[−2, 2]. Figure 6(a) shows the magnitude of the weights for individual, with each dot representing a
neuron and the dot color indicating the absolute value of the scaling factor Ck for the k-th neuron.
Figure 6(b) illustrates the final output functions of the networks with different widths after training.

8 Conclusion

Our investigation into the learning of single-neuron target functions within two-layer neural networks
has elucidated the pivotal influence of initialization scale, randomness, and sample size on achieving
perfect generalization. We found that smaller initialization scales and larger sample sizes tend to
enhance generalization performance, while the element of randomness plays a significant role in
shaping the learning outcomes. By honing in on the concept of perfect generalization, we have
simplified the complexity inherent in the generalization puzzle and have empirically validated the
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existence of both optimistic and separation sample size thresholds. These observations underscore the
intricate interplay among initialization, stochastic elements, and sample size in the learning process
of neural networks.

We must recognize the limitations imposed by the simplicity of our experimental framework, which
was confined to the recovery of a single neuron. Additionally, in Theorem 2, we assume convergence
to a local minimum instead of proving it. Further research into the learning behaviors of networks
with more complex target functions, as well as the effects of critical points on learning dynamics,
represents a compelling direction for future inquiry.
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A Proof of Theorems

A.1 Proof of Theorem1

We begin by establishing Theorem 3, and then leverage it to validate Theorem 1.

Let ϕ(θ0, t) denote the solution to the following differential equation (3):

dθ

dt
= g(θ),

θ(0) = θ0,
(3)

Theorem 3. Assume the conditions:

(i) g(θ) is twice continuously differentiable.

(ii) g(0) = 0.

(iii) ∇g(θ)|θ=0 is diagonalizable.

(iv) The largest eigenvalue of ∇g(θ)|θ=0 is positive.

Denote the solution 3 as ϕ(θ0, t).Then, the limit limα→0 ϕ(αv1 +uα, t+
1
µ1

log( 1
α )) exists, and the

rate of convergence is α
µ1−µ2
2µ1−µ2 , where µ1 and µ2 are the largest and second-largest eigenvalues of

∇g(θ)|θ=0, respectively. v1 is a vector in the eigenspace corresponding to µ1. The vector uα is
arbitrary, subject to the conditions:

(i) uα is orthogonal to the eigenspace of µ1.

(ii) ∃c > 0, such that ∀α > 0, ∥uα∥2 ≤ cα

Intuition of the Theorem:
Let us denote ∇g(θ) by J(t). Linearizing the dynamics around the origin, we have:

dθ

dt
= J(0)θ,

which yields the linearized solution:
θ(t) = eJ(0)tθ0.

When the initial condition θ0 is very small, a large t is required to move away from zero. Consequently,
the top eigenvalue of J(0) will dominate when computing eJ(0)t. Hence, only the projection of θ0
onto the eigenspace corresponding to µ1 will significantly affect the trajectory of the dynamics.
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Sketch of the Proof:
We consider an ϵ-ball centered at the origin and determine when the trajectory of θ(t) intersects
with this ϵ-ball. On one hand, ϵ cannot be too small; otherwise, the time t would be small, and the
exponential term eµ1t would not be dominant. On the other hand, ϵ cannot be too large; otherwise,
the linear approximation of g(θ) would not be valid. Therefore, we must choose an appropriate value
for ϵ and analyze the error caused by the two reasons mentioned above.

Formal Proof of Theorem3: Because J(0) is diagonalizable, we can transform the coordinate sys-
tem such that J(0) becomes a diagonal matrix. Without loss of generality, we assume that J(0) is
the diagonal matrix diag{µ1, µ2, . . . , µd}. We reference Lemma E.3, Lemma E.4, and Lemma E.5
from Li et al. (2020), which prove a special case of Theorem 3 where the eigenspace corresponding
to µ1 is one-dimensional.

We restate their lemmas, denoting F (x) = log(x)− log(1 + κx). Let Tα(r) =
1
µ1
(F (r)− F (α)).

Let R > 0. Since g(θ) is C2-smooth, there exists β > 0 such that ∥J(θ)− J(θ + h)∥2 ≤ β∥h∥2,
for all ∥θ∥2, ∥θ + h∥2 ≤ R. Then we have:

Lemma E.3. For θ(t) = ϕ(θ0, t) with ∥θ0∥2 ≤ α and t ≤ Tα(r), it holds that

∥θ(t)∥2 ≤ 1 + κr

1 + κα
α · eµ1t ≤ r.

Lemma E.4. For θ(t) = ϕ(θ0, t) with ∥θ0∥2 ≤ α and t ≤ Tα(r), we have

θ(t) = etJ(0)θ0 +O(r2).

Lemma E.5. Let θ(t) = ϕ(θ0, t) and θ̂(t) = ϕ(θ̂0, t). If max{∥θ0∥2, ∥θ̂0∥2} ≤ α, then for
t ≤ Tα(r),

∥θ(t)− θ̂(t)∥2 ≤ eµ1t+κr∥θ0 − θ̂0∥2.

Where κ = β
µ1

.

Given α, we compare ϕ(αv1+uα, t+
1
µ1

log( 1
α )) and ϕ(α′v1+uα′ , t+ 1

µ1
log( 1

α′ )), where α′ is an
arbitrary number smaller than α. Let ϵ be an indeterminate number. Define t1 = Tα(ϵ), t2 = Tα′(ϵ),
and t0 = 1

µ1
log( α

α′ ). Then

t2 − t1 =
1

µ1
log(

α

α′ )−
1

µ1
log(

1 + κα

1 + κα′ ) < t0,

implying that t2 − t0 < t1.

Applying Lemma E.3 with r = ϵ, t = t2 − t0, α = α, we obtain

ϕ(αv1 + uα, t2 − t0) = e(t2−t0)J(0)(αv1 + uα) +O(ϵ2).

Similarly, applying Lemma E.3 with r = ϵ, t = t2, α = α′, we get

ϕ(α′v1 + uα′ , t2) = et2J(0)(α′v1 + uα′) +O(ϵ2).

Since
e(t2−t0)J(0)αv1 = e(t2−t0)µ1αv1 = et2µ1α′v1,

we have

∥ϕ(αv1 + uα, t2 − t0)− ϕ(α′v1 + uα′ , t2)∥2 = ∥et2J(0)uα′ + e(t2−t0)J(0)uα∥2 +O(ϵ2).

Furthermore, we have

∥et2J(0)uα′∥2 ≤ eµ2t2cα′ =

(
ϵ(1 + κα′)

α′(1 + κϵ)

)µ2
µ1

cα′,

∥e(t2−t0)J(0)uα∥2 ≤ eµ2(t2−t0)cα =

(
ϵ(1 + κα′)

α(1 + κϵ)

)µ2
µ1

cα.
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Thus, we obtain

∥ϕ(α′v1 + uα′ , t2)− ϕ(αv1 + uα, t2 − t0)∥2 ≤ O(ϵ2) +

(
ϵ(1 + κα′)

α(1 + κϵ)

)µ2
µ1

cα+

(
ϵ(1 + κα′)

α′(1 + κϵ)

)µ2
µ1

cα′

= O(ϵ2) +O
(
(
ϵ

α
)

µ2
µ1

)
α.

Applying Lemma E.3, we conclude that ∥ϕ(α′v1+uα′ , t2)∥2 ≤ ϵ and ∥ϕ(αv1+uα, t2− t0)∥2 ≤ ϵ.
Define ∆t = t+ 1

µ1
log( 1

α′ )− t2 = t+ 1
µ1

log( 1ϵ ) +
1
µ1

log( 1+κϵ
1+κα′ ).

Because ∆t ≤ Tϵ(r) ⇐⇒ µ1t− log(1 + κα′) ≤ log( r
1+κr ), so we only need µ1t ≤ log( r

1+κr ) to
satisfy ∆t ≤ Tϵ(r).

Case1: Assume µ1t ≤ log( R
1+κR ).

let r = 1
e−µ1t−κ

, then r ≤ R and ∆t ≤ Tϵ(r). Applying Lemma E.5 with θ0 = ϕ(α′v1 + uα′ , t2),

θ̂0 = ϕ(αv1 + uα, t2 − t0), t = ∆t, α = ϵ, and r = 1
e−µ1t−κ

, we get

∥ϕ(αv1 + uα, t+
1

µ1
log(

1

α
))− ϕ(α′v1 + uα′ , t+

1

µ1
log(

1

α′ ))∥2

≤ eµ1∆t+kr × ∥ϕ(α′v1 + uα′ , t2)− ϕ(αv1 + uα, t2 − t0)∥2

≤ eµ1t+kr ×O

(
1

ϵ

)
×
(
O(ϵ2) +O

(
(
ϵ

α
)

µ2
µ1

)
α
)

= eµ1t+kr ×
(
O(ϵ) +O

(
(
α

ϵ
)1−

µ2
µ1

))
.

Setting ϵ = αs where 0 < s < 1, we find

eµ1t+kr ×
(
O(ϵ) +O

(
(
α

ϵ
)1−

µ2
µ1

))
= eµ1t+kr ×O

(
αmin{s,(1−s)(1−µ2

µ1
)}
)
.

Choosing s = µ1−µ2

2µ1−µ2
, we obtain the tightest bound:

∥ϕ(αv1 + uα, t+
1

µ1
log(

1

α
))− ϕ(α′v1 + uα′ , t+

1

µ1
log(

1

α′ ))∥2 ≤ eµ1t+kr ×O
(
α

µ1−µ2
2µ1−µ2

)
.

Case2: Assume µ1t > log( R
1+κR ).

Denote ts = 1
µ1

log( R
1+κR ) and τ := t− ts. Then µ1ts ≤ log( R

1+κR ). Applying results of Case1,
we get:

∥ϕ(αv1 +uα, ts +
1

µ1
log(

1

α
))− ϕ(α′v1 +uα′ , ts +

1

µ1
log(

1

α′ ))∥2 ≤ eµ1ts+kR ×O
(
α

µ1−µ2
2µ1−µ2

)
Because ϕ(θ, t) is locally Lipschitz over θ, so

∥ϕ(αv1 + uα, t+
1

µ1
log(

1

α
))− ϕ(α′v1 + uα′ , t+

1

µ1
log(

1

α′ ))∥2 (4)

= ∥ϕ
(
ϕ(αv1 + uα, ts +

1

µ1
log(

1

α
)), τ

)
− ϕ

(
ϕ(α′v1 + uα′ , ts +

1

µ1
log(

1

α′ )), τ

)
∥2 (5)

= O(∥ϕ(αv1 + uα, ts +
1

µ1
log(

1

α
))− ϕ(α′v1 + uα′ , ts +

1

µ1
log(

1

α′ ))∥2) (6)

= O
(
α

µ1−µ2
2µ1−µ2

)
(7)

In both case, ϕ(αv1+uα, t+
1
µ1

log( 1
α )) as a sequence of α satisfies the Cauchy criterion. Therefore,

limα→0 ϕ(αv1 + uα, t +
1
µ1

log( 1
α )) := h(v1, t) exists. Moreover, since eµ1t+kr is bounded in a

neighborhood of v1 and t, the convergence is uniform, ensuring that h(v1, t) is continuous with
respect to v1 and t.
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A.2 Corollary of Theorem1

Corollary 1. Assume the assumptions of Theorem 3 hold. Let v be a vector in the parameter space,
and let v1 be the projection of v into the eigenspace corresponding to the largest eigenvalue of
∇g(θ)|θ=0. Then the limit h(v, t) := limα→0 ϕ(αv, t+

1
µ1

log 1
α ) exists, and h(v, t) = h(v1, t).

Proof. We have ϕ(αv, t+ 1
µ1

log 1
α ) = ϕ(αv1 + α(v − v1), t+

1
µ1

log 1
α ).

Let uα = α(v − v1). Then uα satisfies:

(i) uα is orthogonal to the eigenspace of µ1.

(ii) There exists c > 0 such that for all α > 0, ∥uα∥2 ≤ cα.

Applying Theorem 3, we get limα→0 ϕ(αv, t +
1
µ1

log 1
α ) = limα→0 ϕ(αv1, t +

1
µ1

log 1
α ), so

h(v, t) = h(v1, t).

Corollary 2. Assume the assumptions of Theorem 3 hold. Let h(v, t) := limα→0 ϕ(αv, t+
1
µ1

log 1
α ).

Then for all s > 0, h(sv, t) = h(v, t+ 1
µ1

log(s)).

Proof. According to the definition, we have h(sv, t) = limα→0 ϕ(αsv, t+
1
µ1

log 1
α ). Let α′ = αs,

then h(sv, t) = limα′→0 ϕ(α
′v, t+ 1

µ1
log(s) + 1

µ1
log 1

α′ ) = h(v, t+ 1
µ1

log(s)).

Corollary 3. Assume the assumptions of Theorem 3 hold. Let h(v, t) := limα→0 ϕ(αv, t +
1
µ1

log 1
α ).Let Tv := {h(v, t) : t ∈ R}. Let v1 be the projection of v into the eigenspace of

the largest eigenvalue of ∇g(θ)|θ=0. Then Tv = Tv1 , and for all c > 0, Tcv = Tv. If v ̸= 0, then
Tv = T v1

∥v1∥2
.

Proof. From Corollary 1, we have h(v, t) = h(v1, t), so Tv = Tv1 . From Corollary 2, we have for
all c > 0, h(cv, t) = h(v, t+ 1

µ1
log(c)), so Tcv = Tv for all c > 0.

Remark. Corollary 3 implies that the trajectory of parameters is determined by v1

∥v1∥2
.

Proof of Theorem 1: Denote fi(θ) = fθ(xi). Then ℓ(θ) = 1
2

∑n
i=1(fi(θ)−yi)

2. The gradient of ℓ
at θ is given by −∇ℓ(θ) =

∑n
i=1(yi − fi(θ))∇fi(θ). Because ∇fi(0) = 0, we have −∇ℓ(0) = 0.

The Hessian of −ℓ at 0 is −∇2ℓ(0) =
∑n

i=1 yi∇2fi(0), which is a block diagonal matrix with
blocks Di for i = 1, . . . ,m.

−∇2ℓ(0) =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dm


where Di is given by

Di =

(
0 γ⊤

γ 0d×d

)
, i = 1, 2, . . . ,m

The maximum eigenvalue of Di is ∥γ∥2, and the corresponding eigenvector is (∥γ∥2,γ). Thus, the
maximum eigenvalue of −∇2ℓ(0) is ∥γ∥2. Denote the eigenspace of ∥γ∥2 by V , then the projection
of θ∗ onto V is determined by C. It is easy to verify that the assumptions of Theorem 3 hold, by
defining g(θ) := −∇ℓ(θ). Then, by Corollary 1, h(θ, t) = limα→0 ϕ(αθ, t+

1
µ log 1

α ) exists, and
h(θ, t) as a function of θ is determined by C. By Corollary 3, Tθ is determined by C

∥C∥2
.

Proposition 1. Assume the assumptions of Theorem 3 hold. Let h(v0, t) := limα→0 ϕ(αv0, t +
1
µ1

log 1
α ). Then h(v0, t) as a function of t is differentiable, and d

dth(v0, t) = g(h(v0, t)).
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Proof. Since d
dtϕ(αv0, t+

1
µ log 1

α ) = g
(
ϕ(αv0, t+

1
µ log 1

α )
)

, we have

ϕ(αv0, t+
1

µ
log

1

α
) = h(v0, 0) +

∫ t

0

g

(
ϕ(αv0, s+

1

µ
log

1

α
)

)
ds. (8)

Consider ϕ(αv0, t+
1
µ log 1

α ) as a function of t and α, and extend the value of ϕ(αv0, t+
1
µ log 1

α )

at α = 0 by limα→0 ϕ(αv0, t +
1
µ log 1

α ). Then ϕ is continuous for (t, α) ∈ D = [0, t0] × [0, 1].
Thus, there exists δ > 0 such that ϕ(D) ⊂ Bδ(0). Because g(θ) is continuously differentiable, it is
Lipschitz continuous in Bδ(0).

In Equation 8, let α → 0. Since ϕ(αv0, s + 1
µ log 1

α ) uniformly converges to h(v0, s) and g is
Lipschitz continuous, we obtain

h(v0, t) = h(v0, 0) +

∫ t

0

g(h(v0, s))ds.

Therefore, h(v0, t) is differentiable over t, and d
dth(v0, t) = g(h(v0, t)).

A.3 Proof of Theorem2

Next we begin by establishing Theorem 4, and then leverage it to validate Theorem 2.

Consider the gradient flow of the loss function ℓ:

dθ

dt
= −∇ℓ(θ(t)),

θ(0) = θ0,
(9)

and denote the solution of 9 as ϕ(θ0, t).
Theorem 4. Assume the following conditions:

(i) ℓ(θ) is an analytic and nonnegative function.

(ii) 0 is a strict saddle point of ℓ(θ).

Denote V1 to be the eigenspace corresponding to the largest eigenvalue of −∇2ℓ(θ)|θ=0. Let v1 be
a vector in V1. The vector uα is arbitrary, subject to the conditions:

(i) uα is orthogonal to V1.

(ii) There exists c > 0 such that for all α > 0, ∥uα∥2 ≤ cα.

Denote the solution of 9 as ϕ(θ0, t). Then h(v, t) = limα→0 ϕ(αv+uα, t+
1
µ1

log 1
α ) exists. Given

v0, if h(v0, t) is bounded for all t ≥ 0, then the limit limt→∞ h(v0, t) exists. Furthermore, if this
limit is not a saddle point of ℓ(θ), then there exists a neighborhood Bδ(v0) of v0, and an α0 > 0,
such that the limit limt→∞ ϕ(αv + uα, t +

1
µ1

log 1
α ) exists for all v ∈ Bδ(v0) and 0 < α < α0,

and
lim
t→∞

h(v0, t) = lim
α→0

lim
t→∞

ϕ(αv0 + uα, t+
1

µ1
log

1

α
).

Moreover, the limit limt→∞ h(v, t) is a continuous function of v at v0.

Proof. We attempt to apply Theorem 3 by setting g(θ) = −∇ℓ(θ) and checking the conditions for
g(θ):

• Since ℓ(θ) is analytic, g(θ) is twice differentiable.

• As 0 is a strict saddle point of ℓ(θ), we have g(0) = 0.

• The matrix ∇g(θ)|θ=0 = −∇2ℓ(θ)|θ=0 is symmetric and thus diagonalizable.

• Because 0 is a strict saddle point, the largest eigenvalue of ∇g(θ)|θ=0 is positive.
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Therefore, g(θ) satisfies the conditions of Theorem 3. Applying Theorem 3, we conclude that
h(v, t) = limα→0 ϕ(αv + uα, t+

1
µ1

log 1
α ) exists.

We then proceed in two steps to prove Theorem 4.

(i) First, we prove the existence of limt→∞ h(v0, t) under the condition that h(v0, t) is bounded for
t ≥ 0.

Let θ(t) = h(v0, t). By Proposition 1, θ′(t) = −∇ℓ(θ(t)). Because θ(t) is bounded for all t ≥ 0,
there exists a sequence {tn} such that limn→∞ tn = +∞, and θ̂ = limn→∞ θ(tn) exists. Since

d

dt
ℓ(θ(t)) = ⟨−∇ℓ(θ(t)),θ′(t)⟩ = −∥∇ℓ(θ(t))∥22,

ℓ(θ(t)) is monotonically decreasing over t, and ℓ(θ(t)) ≥ ℓ(θ̂) for all t ≥ 0. Further-
more,

∫ +∞
0

∥∇ℓ(θ(t))∥22 dt ≤ ℓ(θ(0)). Therefore, limt→∞ ∥∇ℓ(θ(t))∥2 = 0, and ∇ℓ(θ̂) =
limt→∞ ∇ℓ(θ(tn)) = 0.

By Łojasiewicz’s inequalityLojasiewicz (1965), there exists C > 0 and 0 < µ < 1, and a neighbor-
hood Bδ(θ̂) such that

∥∇ℓ(θ)∥2 ≥ C|ℓ(θ)− ℓ(θ̂)|µ, ∀θ ∈ Bδ(θ̂).

Since ℓ(θ(t)) ≥ ℓ(θ̂), it follows that

∥∇ℓ(θ(t))∥2 ≥ C(ℓ(θ(t))− ℓ(θ̂))µ, ∀θ ∈ Bδ(θ̂).

Given that limt→∞ θ(tn) = θ̂, there exists an n such that ∥θ(tn)− θ̂∥2 < δ
2 and |ℓ(θ(tn))−ℓ(θ̂)| <

1
2C(1− µ)δ

1
1−µ . Because

d

dt
ℓ(θ(t)) = −∥∇ℓ(θ(t))∥22 = −∥∇ℓ(θ(t))∥2 ×

∥∥∥∥dθdt
∥∥∥∥
2

≤ −C(ℓ(θ(t))− ℓ(θ̂))µ
∥∥∥∥dθdt

∥∥∥∥
2

,

we have
d

dt
(ℓ(θ(t))− ℓ(θ̂))1−µ ≤ −(1− µ)C

∥∥∥∥dθdt
∥∥∥∥
2

.

Thus, ∫ t

tn

∥∥∥∥dθdt
∥∥∥∥
2

dt ≤ 1

C(1− µ)
(ℓ(θ(tn))− ℓ(θ̂))1−µ.

Since ∥θ(t)− θ(tn)∥2 ≤
∫ t

tn

∥∥dθ
dt

∥∥
2
dt, it follows that

∥θ(t)− θ(tn)∥2 ≤ 1

C(1− µ)
(ℓ(θ(tn))− ℓ(θ̂))1−µ <

δ

2
.

Therefore,
∥θ(t)− θ̂∥2 ≤ ∥θ(t)− θ(tn)∥2 + ∥θ(tn)− θ̂∥2 < δ,

so for all t ≥ tn, θ(t) ∈ Bδ(θ̂). Thus, we can apply Łojasiewicz’s inequality for all t ≥ tn.
Consequently, ∫ t

tn

∥∥∥∥dθdt
∥∥∥∥
2

dt ≤ 1

C(1− µ)
(ℓ(θ(tn))− ℓ(θ̂))1−µ, ∀t ≥ tn.

Thus, the length of the trajectory of θ(t) is finite, which implies that limt→∞ θ(t) exists.

Lemma 1. Denote the solution of Equation 9 as ϕ(θ0, t). Assume the following:

(i) ℓ(θ) is an analytic and nonnegative function.

(ii) θ = limt→∞ ϕ(v0, t) exists.

(iii) θ is a local minimum of ℓ(θ).
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Then there exists a neighborhood of v0, denoted Bδ(v0), such that for all v ∈ Bδ(v0), the limit
limt→∞ ϕ(v, t) exists and is continuous at v0.

Proof. By Łojasiewicz’s inequality, there exists C > 0 and 0 < µ < 1, and a neighborhood Bϵ0(θ)
such that

∥∇ℓ(θ)∥2 ≥ C|ℓ(θ)− ℓ(θ)|µ, ∀θ ∈ Bϵ0(θ).

Since θ = limt→∞ ϕ(v0, t), for all ϵ ∈ (0, ϵ0), there exists t0 > 0 such that ∥ϕ(v0, t0)− θ∥2 < ϵ
4

and |ℓ(ϕ(v0, t0))− ℓ(θ)| < 1
4C(1− µ)ϵ

1
1−µ .

Because ϕ(θ, t0) is locally Lipschitz continuous over θ, there exists L > 0 and δ > 0 such that
∥ϕ(v, t0)− ϕ(v0, t0)∥2 < ϵ

4 for all v ∈ Bδ(v0) and |ℓ(ϕ(v, t0))− ℓ(ϕ(v0, t0))| < 1
4C(1− µ)ϵ

1
1−µ

for all v ∈ Bδ(v0).

Thus, for all v ∈ Bδ(v0), we have ∥ϕ(v, t0)−θ∥2 < ∥ϕ(v, t0)−ϕ(v0, t0)∥2+∥ϕ(v0, t0)−θ∥2 < ϵ
2

and |ℓ(ϕ(v, t0))− ℓ(θ)| ≤ |ℓ(ϕ(v, t0))− ℓ(ϕ(v0, t0))|+ |ℓ(ϕ(v0, t0))− ℓ(θ)| < 1
2C(1− µ)ϵ

1
1−µ

for all v ∈ Bδ(v0).

Applying Łojasiewicz’s inequality as in Theorem 3, we get∫ t

t0

∥∥∥∥∂ϕ(v, τ)∂τ

∥∥∥∥
2

dτ ≤ 1

C(1− µ)
(ℓ(ϕ(v, t0))− ℓ(θ))1−µ. (10)

and
∥ϕ(v, t)− ϕ(v, t0)∥2 ≤ 1

C(1− µ)
(ℓ(ϕ(v, t0))− ℓ(θ))1−µ <

ϵ

2
. (11)

Therefore, ∥ϕ(v, t)− θ∥2 ≤ ∥ϕ(v, t)−ϕ(v, t0)∥2 + ∥ϕ(v, t0)−ϕ(v0, t0)∥2 + ∥ϕ(v0, t0)− θ∥2 <
ϵ
2 + ϵ

4 + ϵ
4 = ϵ.

From Equation 10, we know that for all v ∈ Bδ(v0), the length of the trajectory of ϕ(v, t) is finite,
so limt→∞ ϕ(v, t) exists.

From Equation 11, we know that for all ϵ ∈ (0, ϵ0), there exists δ > 0 and t0 > 0 such that for all
v ∈ Bδ(v0) and for all t > t0, we have ∥ϕ(v, t) − θ∥2 < ϵ. Letting t → ∞, we conclude: for all
ϵ ∈ (0, ϵ0), there exists δ > 0 such that for all v ∈ Bδ(v0), ∥ limt→∞ ϕ(v, t)− θ∥2 < ϵ. Therefore,
limt→∞ ϕ(v, t) is continuous at v0.

Now we are back to proof of second part of Theorem 4. We assume that limt→∞ h(v0, t) exists and
is a local minimum of ℓ(θ). We want to prove the following:

1. There exists a neighborhood Bδ(v0) of v0, and an α0 > 0, such that the limit
limt→∞ ϕ(αv + uα, t+

1
µ1

log 1
α ) exists for all v ∈ Bδ(v0) and 0 < α < α0.

2. limt→∞ h(v0, t) = limα→0 limt→∞ ϕ(αv0 + uα, t+
1
µ1

log 1
α ).

3. The limit limt→∞ h(v, t) is a continuous function of v at v0.

Denote q(v, α) := ϕ(αv + uα,
1
µ1

log 1
α ). By Theorem 3, limα→0 q(v, α) exists and is continuous

over v.

We have

ϕ(αv + uα, t+
1

µ1
log

1

α
) = ϕ(ϕ(αv + uα,

1

µ1
log

1

α
), t) = ϕ(q(v, α), t).

And
h(v, t) = lim

α→0
ϕ(αv + uα, t+

1

µ1
log

1

α
) = ϕ( lim

α→0
q(v, α), t).

Denote q(v, 0) := limα→0 q(v, α). By setting v0 in Lemma 1 equal to q(v0, 0), we get: there
exists a neighborhood of q(v0, 0), denoted Bδ(q(v0, 0)), such that for all v ∈ Bδ(q(v0, 0)), the limit
limt→∞ ϕ(v, t) exists and is continuous at q(v0, 0).
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Because q(v, α) is continuous at (v0, 0), the pre-image q−1(Bδ(q(v0, 0))) is open. Thus, there exists
a neighborhood Bδ(v0) of v0, and an α0 > 0, such that for all v ∈ Bδ(v0) and 0 < α < α0, the
limit limt→∞ ϕ(αv + uα, t+

1
µ1

log 1
α ) exists.

Since q(v, α) is continuous at (v0, 0), and limt→∞ ϕ(v, t) is continuous at q(v0, 0), it follows that
limt→∞ ϕ(q(v, α), t) is continuous at (v0, 0). Therefore, we have

lim
α→0

lim
t→∞

ϕ(q(v0, α), t) = lim
t→∞

ϕ(q(v0, 0), t) = lim
t→∞

h(v0, t),

and limt→∞ h(v, t) is continuous at v0.

Proof of Theorem 2. Under the notations and assumptions of Theorem 2, we have

−∇2ℓ(0) =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dm

 ,

where each Di is defined as

Di =

(
0 γ⊤

γ 0d×d

)
,

for i = 1, 2, . . . ,m.

The maximum eigenvalue of Di is ∥γ∥2. Therefore, the maximum eigenvalue of −∇2ℓ(0) is
∥γ∥2 > 0, indicating that 0 is a strict saddle point of ℓ(θ). Given that ℓ(θ) is an analytic and
nonnegative function, and 0 is a strict saddle point of ℓ(θ), the conditions of Theorem 4 are satisfied.
Let us denote the eigenspace corresponding to ∥γ∥2 by V . Then the projection of θ onto V is
determined by C. We now proceed to verify the assertions of Theorem 2 point by point.

(i) By applying Theorem 4, we confirm that the limit

h(θ, t) = lim
α→0

ϕ(αθ, t+
1

∥γ∥2
log

1

α
)

exists.

(ii) When the set {h(θ, t) : t ≥ 0} is bounded, Theorem 4 ensures that the limit limt→∞ h(θ, t)

exists. Let θ̂ be the projection of θ onto V . Since h(θ, t) = h(θ̂, t) and for any α > 0,
h(αθ, t) = h(θ, t+ 1

∥γ∥2
logα), it follows that h(θ, t) = h

(
θ̂

∥θ̂∥2
, t+ 1

∥γ∥2
log 1

∥θ̂∥2

)
. Given

the existence of limt→∞ h(θ, t), we have

lim
t→∞

h(θ, t) = lim
t→∞

h

(
θ̂

∥θ̂∥2
, t

)
.

As θ̂
∥θ̂∥2

is determined by C
∥C∥2

, the limit limt→∞ h(θ, t) is determined by C
∥C∥2

.

(iii) Applying Theorem 4 again, we deduce that if limt→∞ h(θ0, t) exists and is not a saddle point
of ℓ(θ), then

lim
t→∞

h(θ0, t) = lim
α→0

lim
t→∞

ϕ

(
αθ0, t+

1

∥γ∥2
log

1

α

)
.

Furthermore, the limit limt→∞ h(θ, t) is continuous at θ0.
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B Experiment of higher dimensional input

Consider a neuron network with high dimensional inputfθ(x) =
∑m

i=1 aiσ(w
⊤
i x). Theorem 1

shows that under small initialzation, the trajectory is determined by C(θ)
∥C(θ)∥2

. Because C(θ) is an
m dimensional vector, so the trajectory of θ under all initialization is restricted to a m dimensional
manifold. Note the dimension of manifold of θ is independent of dimension of input. So even when
input is very high dimensional, the trace of parameters stays in a low dimensional.

In Figure 7, we train a neural network for m = 2 and d = 500. The sample size is 500. The
initialization of parameters is a Gaussian distribution centered at 0, with its standard in figure’s
legend. By scaling the second neuron, we manage to make C1/C2 to be a constant in each subfigure.
In this figure, the loss curve and parameters curve matches pefectly among different trials. The results
show that, there existing a limiting trace of parameters as initialization scale approaches 0. Moreover,
the trace of parameters is determined by C1/C2.

In Figure 8, we conduct experiments for m = 2 and d = 3. fθ(x) = a1 tanh(w
⊤
1 x + b1) +

a2 tanh(w
⊤
2 x+ b2), with x ∈ R3. The target function is f∗(x) = tanh(1Tx+1). The training data

(xi, yi)
n
i=1 is obtained by yi = f∗(xi) and {xi}ni=1 draw independently from uniform distribution

on interval [−2, 2]d. The sample size n = 10. It is seen that in whatever initialization, the parameters
all converge to Q∗, thus the generalization error is zero. Besides recovery, there is a clear sign that
network initialized with c̃ closer to 1 will converge to Q1 and network initialized with c̃ closer to 0
will converge to Q2. This phenomenon is in accordance to what we observed in one-dimensional
experiment.

In Figure 9, we plot generalization error in high dimensional case. The network model is fθ(x) =
a1 tanh(w

⊤
1 x+b1)+a2 tanh(w

⊤
2 x+b2), with x ∈ R3. The target function is f∗(x) = tanh(1Tx+

1). The setting of experiment is m = 2 and d = 3. In this case, optimistic sample size is 5, the
separation sample size of Q2 is 6, the separation sample size of Q1 is 9. It is seen that when the
sample size is larger than optimistic sample size, the network can recover at c̃ = 1 or c̃ = 0. When
sample size is above separation sample size of Q1, all initialization can recover target function. At
separation sample size of Q2, which is n = 6, there is a small probability of initialization cannot
recover target function. When sample size is above 6, 7, 8, the probability of recovery increases.

In Figure 10, we show that why when n = 6, 7, 8, recovery fails to happen at c̃ = 0. Note that when
sample size reaches the separation size of Q2, it only guarantees that separation of Q2 is almost
every. That is to say, it allows that a subset with zero-measure with respect to Q2 is not separated.
Unfortunately, the origin of Q2 belongs to the set. There exists other global minimum rather than Q2

around origin of Q2. Besides, c̃ = 0 will lead to converge to origin of Q2. So it is possible for c̃ near
0 to converge to these imperfect global minimum, thus failing in recovery. Overall, our understanding
is that, both separation sample size and optimistic sample size is a lower bound for recovery. The
recovery need not to happen at these sample size, but under these sample size, the recovery could not
happen.

C Experimental Details

In Figure 1(a) to 1(e), the learning rate was set to 0.5. Points for calculating generalization error were
1000 points evenly from the interval [−2, 2]. For Figures 1(d) and 1(e), due to nonlinear convergence
of seeds, it is difficult to get a extremely low training loss. So we train the network until loss is
10−8. For For Figures 1(a) to 1(e), we train the network until training loss is 10−15. In Figure 1(f),
the generalization error is computed by 1000 points (xi, yi)

1000
i=1 with yi = f∗(xi) and {xi}1000i=1

following i.i.d standard Gaussian distribution. For n = 2, 3, the iterations is 106. For n = 4, 5, the
iterations is 4× 105. The training was halted once the loss reached 10−15.

In Figure 2, training was performed using gradient descent with a learning rate of 0.01. Suppose θ1
and θ2 to be the initialization of the first and the second neuron, respectively. We transform θ2 into
aθ2, and choose appropriate value of a to keep c = 0.5 across all trials.

In Figure 3, Training was conducted using gradient descent with a learning rate of 0.05 and iterations
of 106. The dataset (xi, yi)

n
i=1 consists of 6 points, with yi = f∗(xi) and {xi}6i=1 equally spaced

points on the interval [−2, 2]. We use seeds 0 to 400 to generate initialization of parameters.
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Figure 7: Training a two-layer neural network with varying widths. The network model is fθ(x) =
a1 tanh(w

⊤
1 x+b1)+a2 tanh(w

⊤
2 x+b2), with x ∈ R3. The target function is f∗(x) = tanh(1Tx+

1). The training data (xi, yi)
n
i=1 is obtained by yi = f∗(xi) and {xi}ni=1 draw independently from

uniform distribution on interval [−2, 2]d with random seed 0. In this experiments, m = 2,d =
500,n = 500. The iterations is 104, the learning rate is 0.001. Different initialization use different
seeds to generate random number for Gaussian distribution of parameters. But we keep c := C1/C2

to be a constant for all initialization in a subfigure. The value of c is in the caption of subfigure. In
the right part, the parameters w1 and w2 is the first coordinate of w1 and w2.
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Figure 8: Training a two-layer neural network. The network model is fθ(x) = a1 tanh(w
⊤
1 x+ b1)+

a2 tanh(w
⊤
2 x+ b2), with x ∈ R3. The target function is f∗(x) = tanh(1Tx+1). The training data

(xi, yi)
n
i=1 is obtained by yi = f∗(xi) and {xi}ni=1 draw independently from uniform distribution

on interval [−2, 2]d. In this experiments, m = 2,d = 3,n = 10. The iterations is 106, the learning
rate is 0.5. The initialization scale is 10−20. Caption wi represents the i-th dimension of w.
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Figure 9: Training a two-layer neural network. The network model is fθ(x) = a1 tanh(w
⊤
1 x+ b1)+

a2 tanh(w
⊤
2 x+ b2), with x ∈ R3. The target function is f∗(x) = tanh(1Tx+1). The training data

(xi, yi)
n
i=1 is obtained by yi = f∗(xi) and {xi}ni=1 draw independently from uniform distribution

on interval [−2, 2]d. In this experiments, m = 2,d = 3. The iterations is 106 for n = 5, 6, 7, 8.
The iterations is 2× 107 for n = 9, 10. The learning rate is 0.25. The initialization scale is 10−20.
The generalization error is obtained by assessing 1000 points drawn independently from uniform
distribution on interval [−2, 2]d. We identify generalization error lower than 10−7 to be 10−7, and
regard it as successful recovery of the target function.
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Figure 10: The experiment is same with 9. In this figure, the w1 is first coordinate of w1, w2 is the
first coordinate of w2.
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In Figure 4, gradient descent was employed as the training algorithm with a learning rate of 0.5. For
n = 2, 3, 4, in all experiments training loss reaches 10−15 and then training stops. For n = 5, 6, the
network is trained with iterations 107. The train loss is shown in Figure 11.
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(b) n = 6

Figure 11: For n = 5, all networks are trained with learning rate 0.5 and iterations 107. The training
stops when loss reaches 10−15. For n = 6, networks with seed= 1 to seed= 4 are trained with
learning rate 0.5 and iterations 2× 106. The training stops when loss reaches 10−15. Networks with
seed= 0 are trained until loss reaches 10−15.

In Figure 5, gradient descent with a learning rate of 0.01 is used for training. The iterations is
105. Suppose θ1 and θ2 to be the initialization of the first and the second neuron, respectively. We
transform θ2 into aθ2, and choose appropriate value of a to keep c = 0.5 across all trials.

In Figure 6, gradient descent with a learning rate of 0.01 is used, and the initial weights are drawn
from a Gaussian distribution with a mean of 0 and a standard deviation of 10−20. In all experiments,
train loss reaches 10−15. For all width, we use 0 as random seed to generate Gaussian distribution for
the initialization of parameters.

The details of experiments of Figure 7 to Figure 10 are in their captions.
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